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The flow at low Reynolds number around rectangular cylinders of varying chord-to-
thickness ratios under transverse periodic forcing is studied numerically. Although
of relatively low amplitude, the forcing locks the shedding from both the leading
and trailing edges to the applied frequency. The base suction, and the lift and the
drag on the cylinders are found to be complex functions of the forcing frequency.
At low Reynolds numbers and without applied forcing, the flow is controlled by
a global instability with the leading- and trailing-edge shedding locked; moreover,
the reduced frequency of shedding varies in a stepwise manner with the chord-to-
thickness ratio. This global instability is still evident in the flows under external
forcing examined in this paper. While previous researchers have conjectured that the
trailing-edge shedding plays a dominant role in the preferred frequency selection in
the natural shedding case, the important role of trailing-edge shedding when the flow
is forced is confirmed in the present study. In particular, the individual contributions
from leading- and trailing-edge vortices on the perturbation to the leading-edge shear
layer are examined. In addition, it is shown that the base suction is maximum when
the forcing frequency is close to the global instability frequency observed in unforced
flows, thereby strengthening the argument that the unforced, forced, and duct resonant
cases are strongly influenced by the same global instability. The variations of the lift,
drag and formation length with chord-to-thickness ratio are quantified.

1. Introduction
Strong emphasis is found in the literature on the flow around just one example

of the elliptic cylinder, namely the circular cylinder (see review by Williamson 1996).
The Universal Strouhal number relationship, proposed by Roshko (1954, 1995) to be
independent of body shape, suggested that the circular cylinder is a generic shape
for all two-dimensional bluff bodies. This has been supported by measurements for
a large range of body shapes by Griffin (1981). However, recent investigations of
the flow at relatively low Reynolds numbers around elliptic cylinders of different
eccentricities suggest that the circular cylinder does not adequately represent the
full richness of the two-dimensional wake structure of elliptic cylinders (Johnson,
Thompson & Hourigan 2001). Furthermore, there is a complexity of flow structure
and vortex interactions in flow around rectangular cylinders that does not exist for
the ‘generic’ circular cylinder geometry (Hourigan, Thompson & Tan 2001). As its
chord-to-thickness ratio is varied from zero to infinity, the rectangular cylinder also
encompasses the range of bluff bodies from a flat plate normal to the flow, the square
cylinder, through to a flat plate parallel to the flow. Given the many examples of
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rectangular cross-section that appear in practical flows, for example in flows around
buildings and through cross-flow heat exchangers, a greater understanding is needed
of their flow characteristics.

In this article we consider the boundary layer and wake response of flow past
elongated two-dimensional cylinders of rectangular cross-section subject to transverse
sinusoidal forcing. Even a small-amplitude forcing can result in significant changes to
the flow characteristics (Welsh et al. 1990). This study focuses on two of the inherent
receptivities/instabilities that exist in this flow and the interaction between them. The
oncoming flow separates from the leading edge to form a separated shear layer. At
the chord-to-thickness ratios considered, it reattaches along the surface of the cylinder
forming discrete vortex structures that travel downstream and pass into the wake. At
the trailing edge, the boundary layers from each side of the cylinder interact through
a global instability leading to vortex shedding and the Bénard/von Kármán wake.
Of primary interest to this research is the interaction between the absolute shedding
instability at the trailing edge and the receptivity of the shear layer at the leading
edge. The type of flow excitation studied here has been categorized as extraneously
induced excitation (EIE); one of the three broad groupings defined by Naudascher &
Rockwell (1994).

In the absence of any external disturbance, the leading-edge shear layer experiences
a low-frequency flapping and shedding of large-scale vortices into the boundary
layer is irregular (Cherry, Hiller & Latour 1984). A shorter reattachment bubble,
stronger surface pressure fluctuations and more coherent large-scale structures have
been observed when low-level transverse acoustic forcing is applied (Sigurdson 1995).
Although the shear layer amplifies a broad band of frequencies, it is more responsive to
frequencies associated with the Kelvin–Helmholtz instability and large-scale shedding
(Sigurdson 1995; Wu & Soria 1992; Soria, Sheridan & Wu 1993).

The response of the absolute instability near the trailing edge of blunt cylinders
to external excitation has been shown to be similar to that of short bluff bodies in
experiments by Lofty & Rockwell (1993). The flows around short bluff bodies such
as circular and square-sectioned cylinders with excitation have been well-studied and
are reviewed by Bearman (1984). In line with the theoretical predictions of absolute
instability, the shedding only locks on to the low-amplitude applied forcing in a
narrow frequency range around the natural shedding frequency, which is known as
the resonant point. Stronger base suction (Stansby 1976; Bearman & Davies 1977;
Blackburn & Henderson 1996) and hence drag, and larger fluctuating lift forces
(Staubli 1983; Bearman & Obasaju 1982), due to an increased spanwise correlation
and reduced vortex formation lengths have been observed within this range of
capture. In some cases, a phase shift of π is observed between the excitation and the
shedding at some point in this range. This lock-in range has been shown to grow
with larger forcing levels with a quasi-periodic state observed just outside this range
(Karniadakis & Triantafyllou 1989). At forcing frequencies well above the lock-in
range, some experiments have observed the mean base suction to fall below that of
the unforced case (Bearman & Obasaju 1982; Ongoren & Rockwell 1988).

In the absence of any external forcing, the non-dimensional shedding frequency or
Strouhal number (Stc = f c/U∞, where f is the measured wake frequency, c is the
chord or cylinder length, and U∞ is the upstream velocity) for the flow around a long
rectangular cylinder displays a stepwise increase with increasing chord-to-thickness
ratio c/t (Nakamura, Ohya & Tsuruta 1991), where t is the cylinder thickness. Note
that the Strouhal number based on cylinder thickness Stt is also relevant to the current
study; in addition, there are the corresponding Strouhal numbers based on the forcing
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frequency for the forced flows, Stf c and Stft, respectively. Each step corresponds to
a different shedding mode, which is characterized by a different number of vortex
pairs (n) between the leading and trailing edge. Thus, n represents the number of
vortices along the top or bottom surface of the cylinder. This stepping behaviour
relies on a feedback mechanism as follows. Weak pressure pulses are generated from
vortices shed from the leading edge as they pass the trailing edge, locking subsequent
leading-edge shedding. This mechanism has been called the impinging leading-edge
vortex instability (ILEV) by Naudascher & Wang (1993), and Naudascher & Rockwell
(1994). Numerical simulations by Hourigan et al. (2001) showed the presence of strong
shedding from the trailing edge resulting from the boundary layer rolling up as it
convects past the trailing edge. That study suggested the ILEV mechanism needs
to be extended to include the pressure fluctuations from the direct shedding at the
trailing edge. Thus, it is suggested that the feedback mechanism should include the
interaction of trailing-edge vortices (TEVs) as well ILEVs as was originally proposed.
Since this trailing-edge shedding operates only over a narrow frequency range, unlike
the leading-edge shear layer shedding, it can exert a controlling influence on the
frequency selection and, in particular, the range of chord-to-thickness ratios that lock
on to a particular shedding mode, i.e. the size of the step. Importantly, in this paper
a comparison is made of the influence of ILEVs and TEVs on the leading-edge
shear layer and hence of the controlling feedback mechanism. In either case, as the
feedback mechanism is relatively weak, the flow gradually loses synchronization with
increasing Reynolds number and chord-to-thickness ratio so that for Re > 2000 and
c/t > 12, there appears to be no observable effect of the feedback loop (Nakamura
et al. 1991).

With the aid of an external influence, the synchronization between the leading-
and trailing-edge shedding can be re-established. The flow appears to be receptive to
approximately the same Strouhal numbers as in the earlier case (i.e. for natural
shedding at lower Reynolds numbers). This has been shown in experiments in
two different ways. First, when the flow is subjected to transverse acoustic forcing
(Parker & Welsh 1983; Mills et al. 1995; Mills, Sheridan & Hourigan 2002; Mills 1998),
and secondly, where the cylinder is placed in a duct and the resonant cross-stream
acoustic mode is excited (Stokes & Welsh 1986). In the first case, the experiments
by Parker & Welsh (1983) showed that the acoustic forcing locks the shedding from
the leading edge and these vortices travel along the cylinder and into the wake while
maintaining the same frequency. Those experiments also show a greater curvature of
the leading-edge shear layer resulting in a shorter reattachment length and stronger
surface suction with the applied forcing. Base pressure measurements were recorded
for a cylinder in an open jet wind tunnel following that study (Mills et al. 1995,
2002; Mills 1998). When the forcing Strouhal number (Stfc) that resulted in the
strongest mean base suction for each chord-to-thickness ratio is considered, it also
shows a stepwise increase with chord-to-thickness ratio similar to the natural shedding
case. For the second case, when the cylinder is placed centrally in a duct, the duct
resonance frequencies that lock the flow and sustain the resonance also showed
a similar stepping (Stokes & Welsh 1986). In both these cases, the weak pressure
pulse in the feedback loop is replaced by an external influence, either directly by
external forcing, or indirectly by a self-excited resonant acoustic field. In effect, these
experiments show that the underlying mechanism of the ILEV/TEVS instability can
still exert a strong influence even at higher Reynolds numbers.

A numerical study of flow around long rectangular cylinders under low-amplitude
transverse oscillatory forcing is presented in this paper. This complements and extends
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the experimental studies of Mills (1998), and Mills et al. (2002), especially by providing
and interpreting significantly more quantitative measurements not available from the
experiments. For the amplitudes considered, the cross-stream forcing is effectively
equivalent to oscillating the cylinder. This has been verified by numerical experiments.
In addition to the experimental results of Mills (1998), comparisons are also made
with results of an investigation into the unforced or natural flow case presented by
Hourigan et al. (2001). The range of chord-to-thickness ratios studied is 3 <c/t < 16
for the natural shedding case, and 6 <c/t < 16 for the forced shedding case. Surface
pressure and force coefficients are used to gauge the response of the system to the
applied forcing. Flow visualization is then used to analyse other important features
such as shedding modes and phasing. The convective velocity of the vortices and the
vortex formation length are also used to relate the flow field to the overall response.
Finally, the evidence supporting the more substantial role of the trailing-edge vortices
in the feedback mechanism is presented.

2. Numerical method
The spectral-element method is used in this study, as described in Thompson,

Hourigan & Sheridan (1996), and Hourigan et al. (2001). A general description of the
method is given in Sherwin & Karnidakis (2001). The method and implementation
have been described in detail and validated for previous related studies (Thompson
et al. 1996; Tan, Thompson & Hourigan 1998; Sheard, Thompson & Hourigan 2003),
so only the necessary details are presented here. The method is second-order in time
and obtains spectral convergence for smooth problems. The effect on the flow of the
sharp corners of the cylinder is to induce minor oscillations in the vorticity field in
the macro-elements immediately adjacent to the corners. However, the effect remains
localized to these elements and does not cause significant degradation of the solution
field elsewhere. This is unlike the situation for a global method, where the oscillations
can significantly contaminate the solution throughout the domain. To verify this
point, some simulations were repeated for c/t = 7 using a second-order finite-volume
method with a very fine mesh in the neighbourhood of the cylinder. The predicted
Strouhal number and base pressure coefficient were within 3% of the values predicted
using the spectral-element method.

The conditions applied at the boundaries of the computational domain are, in the
case of no forcing: (i) no slip on the cylinder; (ii) zero normal velocity derivative
at the outflow boundary; and (iii) on the side and inflow boundary the velocity was
taken as uniform in the horizontal direction. The global applied perturbation is a
sinusoidally oscillating velocity component in the transverse direction added to the
velocity at all free-stream boundaries, equivalent to adding an oscillatory component
to the free-stream flow. This is applied once the flow has reached an asymptotic
state in the absence of forcing and the forced flow is then simulated until it reaches
a new typically periodic asymptotic state. A typical computational mesh displaying
the macro-elements employed for the rectangular cylinder with c/t = 10 is shown in
figure 1. Only the macro-elements are shown; each element is further subdivided into
Nx × Ny nodes. Typically Nx =Ny = 7 or 9.

2.1. Selection of Reynolds number

The choice of Reynolds number for the simulations is a compromise. A large
parameter space is considered, with variations in chord-to-thickness ratio and forcing
frequency, and to a lesser extent, forcing amplitude. This scope effectively rules out
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Figure 1. A typical computational mesh showing the macro elements used in simulations
(c/t = 10).

expensive three-dimensional large-eddy simulations that could perhaps match the
typical Reynolds numbers used in the experiments of between 103 and 104.

Three-dimensional direct numerical simulations (Tan 2000) show that the unforced
flow becomes three-dimensional at approximately Re =350–400, with some variation
with chord-to-thickness ratio. This result is broadly consistent with Sasaki & Kiya
(1991), who found that for very high chord-to-thickness ratio cylinders, the onset of
three-dimensional flow occurred at Re ≈ 320. In both cases, the three-dimensionality
develops from the leading-edge separation bubble. Further numerical simulations
indicate that the introduction of transverse forcing raises that transition Reynolds
number to above Re= 600 (Tan 2000). The water tunnel experiments of Hourigan
et al. (1993) show the forced flow is clearly three-dimensional at Re = 1000, with the
boundary layer and wake structures much more ordered than in the unforced case.
Given this background, a Reynolds number of 400 was chosen for this study and
two-dimensional simulations were used to predict the flow. This Reynolds number is
high enough for strong vortical structures to form from both the leading and trailing
edges of the cylinder and it is these structures that appear to govern the flow physics.
In addition, since the flow is forced, the effect of three-dimensionality and turbulence
is reduced. Indeed, the flow is two-dimensional at this Reynolds number. Hence this
two-dimensional modelling is expected to accurately reflect the behaviour at Re = 400.
In addition, a comparison of the numerical predictions with experimental results at
higher Reynolds numbers indicate that the trends in the force coefficients with forcing
frequency and chord-to-thickness ratio are in broad agreement with the experimental
trends, as is the observed Strouhal number stepping.

2.2. Numerical resolution

Simulations with different resolutions were performed to verify that the chosen
resolution was sufficient to accurately capture the flow behaviour. These were
performed with the same macro-element grid, but with different degree tensor-
product interpolating polynomials within macro-elements. Results were obtained
using Nx × Ny = 7 × 7 and Nx × Ny = 9 × 9 internal nodes per element. The timestep
was also decreased for the higher spatial resolution simulations because of the
Courant constraint: from �t =0.007 to �t = 0.004. Comparison simulations were
performed for c/t = 10 and Stft =0.14 − 0.18 at 5 regular intervals. Within this range
of forcing, the mean base suction varied between 0.46 < cp < 1.22. Over this range,
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(a)

(b)

Figure 2. Vorticity plots for flow around a cylinder with c/t = 10. (a) Taken at 90◦ in
the forcing cycle with Stft = 0.16 and vpert = 2.5%. (b) No applied forcing and taken at
approximately the same phase in the shedding cycle. Contouring level range is ±0.2 to ±4.
This range is applicable to all subsequent vorticity plots. Vorticity has been non-dimensionalized
by cylinder thickness and upstream speed.

the deviations from the predictions using the lower resolution were less than 2%. This
was considered an acceptable tolerance and so the lower resolution of Nx × Ny = 7 × 7
was assumed to be sufficient for the bulk of the simulations.

3. Results
This section examines the influence of a small sinusoidal cross-flow oscillation on the

flow around a long rectangular cylinder. Initially, the base pressure is used to indicate
the response of the flow to the applied forcing and compared with experimental
data. The overall force coefficients are presented next. This is followed by some flow
visualization and further post-processing to aid in the interpretation of the predicted
quantities.

Figure 2 shows shaded contours of vorticity for flow past a cylinder with c/t = 10
and Re= 400 for the cases with and without forcing, to illustrate the substantial effect
of applied forcing. For the forced case, the plot is taken at 90◦ in the sinusoidal forcing
cycle with perturbation amplitude vpert = 2.5% and Stft = 0.16. At this frequency, the
strongest mean base suction is recorded in the lock-in range for this chord-to-thickness
ratio and forcing amplitude. The vorticity plot in the natural shedding case is taken
at a phase in the shedding cycle that approximately matches the forced case. There
are several key differences compared with the natural shedding cases described by
Hourigan et al. (2001). Starting from the leading edge, the shear layer reattaches
earlier and more-compact vortices are shed. These vortices remain more compact
while they convect toward the trailing edge and coalesce with the vortices shed from
there. The vortices at the trailing edge are marginally more compact than those in
the natural shedding case.

3.1. Mean base pressure

The flows for 6 � c/t � 16 are simulated for a range of forcing frequencies at Re =400
and vpert =2.5%. Unless otherwise stated, these values are fixed for all following
sections. A large lock-in range is observed for all the cylinders; the range varied from
Stft = 0.13 to 0.20 (highest frequency simulated) for the shortest cylinder (c/t = 6) to
0.09 � Stft � 0.19 for the longest cylinder (c/t = 16). The large lock-in range is possibly



Flow past rectangular cylinders 39

a result of the large receptivity range of the leading-edge shear layer combined with
the suppression of the narrow-band trailing-edge shedding through interference from
passing leading-edge vortices. When the flow is locked, both the leading- and trailing-
edge shedding locks on to the single forcing frequency.

The behaviour of the time-mean base pressure coefficient measured at the centre of
the trailing face as a function of forcing frequency, both predicted by the simulations
and measured experimentally by Mills (1998), and Mills et al. (2002), is shown in
figure 3. Referring to the simulations, cylinders with a chord-to-thickness ratio of
c/t = 6, 7, 10, 11, 15 and 16 show a single peak in the mean base suction equivalent
to a local minimum in base pressure coefficient. These peaks are larger than for
cylinders with chord-to-thickness ratios of c/t = 8, 9, 12, 13 and 14. For the second
set, there are two less prominent peaks, and at times one of them is barely noticeable.
For reasons that will become clear later, it is convenient to group local peaks in the
mean base pressure into two categories. The main group or primary peaks consists of
all cases that show only a single peak and the local peak associated with the lower
forcing frequency in those cases with two local peaks. The remainder or secondary
peaks consists of the local peak that occurs at the higher forcing frequency in those
cases that display two local peaks.

There is a functional dependence of the frequency at which the mean base suction
peaks on chord-to-thickness ratio for both groups. Consider the primary, i.e. dominant,
peaks first. Beginning with c/t =6, a local maximum base suction, or minimum base
pressure coefficient, is recorded for Stft =0.17. As the chord-to-thickness ratio is
increased to c/t = 7, the Strouhal number at which maximum base suction occurs
drops to Stft = 0.16, then Stft = 0.14 for c/t = 8 and Stft = 0.12 for c/t =9, with the last
two of smaller magnitude. There is a jump in frequency when increasing the chord-
to-thickness ratio to c/t = 10 which shows only a single peak at Stft = 0.165. Then
with increasing chord-to-thickness ratio, this peak shifts to Stft = 0.155 for c/t = 11,
Stft = 0.14 for c/t =12, Stft = 0.13 for c/t = 13 and Stft = 0.11 for c/t = 14, with again
the last two being of relatively lower amplitude. Similar to the trend starting at
c/t = 10, there is a single larger peak at Stft = 0.155 for c/t = 15 which then decreases
to Stft =0.145 at c/t = 16. The same process also occurs for the secondary group
of peaks. At c/t =8, the peak is at Stft =0.174 and it reduces to Stft = 0.162 when
c/t = 9. The same trend again is seen for c/t = 12, 13 and 14 with peaks at Stft = 0.17,
0.157 and 0.155 respectively.

Alongside each plot in figure 3 is an arrow showing the predicted mean base
pressure coefficient when no forcing is applied. The natural shedding frequency for
the simulated cases that lock on to a single frequency is also shown.

3.2. Lift and drag forces

In the previous sections, the focus was on the pressure at a single point on the
cylinder. Here, the overall force coefficients are examined. The mean drag coefficient
and the standard deviation of the lift coefficient, which quantifies the fluctuating lift
force, are examined for a range of cylinder chords and forcing frequencies. Only
the pressure forces are considered because the viscous forces are relatively small at
these moderate Reynolds numbers. It is relatively simple to calculate the forces on a
rectangular cylinder as only the leading and trailing faces contribute to drag and the
top and bottom faces contribute to lift forces.

The mean drag coefficient and the fluctuating lift coefficient are plotted in figure 4
for 6 � c/t � 16 for a range of forcing frequencies. As expected, the mean drag force
coefficient closely mimics the mean base pressure coefficient. As the contribution from
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Figure 3. (a) Mean base pressure coefficient as a function of forcing frequency for cylinders
in the range 6 � c/t � 16 simulated at Re= 400 with a perturbation amplitude of vpert =2.5%
(b) Experimental results recorded for Re ≈ 9000 with forcing amplitude of 5% of the free-stream
velocity measured at a different location. Horizontal arrows show the mean base suction for
the unforced case. Vertical arrows show the natural shedding frequency for the unforced case.

the leading face is close to constant for all cases, the variation in mean drag force
coefficient is chiefly a result of the trailing-face contribution (i.e. the mean frontal
drag coefficient cd = 0.774–0.851 for c/t =10 and cd =0.808–0.833 for c/t = 13, for
all the forcing frequencies simulated). The mean base pressure coefficient is strongly
related to the pressure force acting on the back face of the cylinder. The dependence
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Figure 4. (a) Mean drag coefficient and (b) standard deviation of the lift coefficient as a
function of forcing frequency for cylinders with 6 � c/t � 16 at Re =400 and vpert = 2.5%.
The arrows on the left show the mean drag coefficient and the standard deviation of the
drag coefficient when no forcing is applied. The dashed black lines approximately connect the
primary peaks and the dashed grey lines connect the secondary peaks.

of the local maxima in mean drag coefficient as the chord-to-thickness ratio is varied
is similar to that for the mean base suction. This is indicated by the two sets of
dashed lines.

The plots of fluctuating lift force show some quantitative differences to the
behaviour observed for the mean drag. Overall, there is a gradual rise in the
fluctuating lift force with frequency. This is a result of the larger acceleration of
the applied forcing field, especially near the cylinder. Compared with the mean drag
or mean base pressure plots, the standard deviation in the lift coefficient shows a
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Figure 5. Strouhal number for the applied forcing frequency (non-dimensionalized with
chord), Stfc, which results in a local peak in the mean base suction, mean drag and fluctuating
lift as a function of the chord-to-thickness ratio for the present simulations. The local peaks
in mean base suction from experiments by Mills (1998) and Mills et al. (2002) are also shown.

local maximum for cases associated with the primary peaks and a local minimum for
cases associated with the secondary peaks. The black/grey dashed lines in figure 4
mark these trends.

3.3. Frequency selection

Using the data on the mean base pressure, and drag and fluctuating lift forces for
various forcing frequencies and cylinder chords (figures 3 and 4), the Strouhal number
based on chord of the forcing (Stfc) at which these local peaks occur is plotted in
figure 5. The experimental measurements of mean base pressure from Mills (1998), and
Mills et al. (2002) is also plotted. Note that the primary peaks, corresponding to local
maxima in mean base suction, drag and fluctuating lift show a stepwise increase which
is highlighted by the darker boxes. Each step corresponds to a particular shedding
mode, n, which will be shown later in § 3.4.3 to correspond to the number vortices
formed along the cylinder. This stepwise trend is also seen in the experimental results.
The intermediary steps corresponding to the secondary peaks, which also display a
local maximum in mean base suction and drag but a local minimum in fluctuating
lift are shown by the lighter boxes.

3.4. Dynamics of the flow

In this section, visualizations of the flow fields are used to relate the Strouhal number
stepping to vortical flow structures. Previous studies have linked the phasing of vortical
structures to the frequency selection (Hourigan et al. 1993; Mills 1998; Hourigan
et al. 2001; Mills et al. 2002). To address this issue through the numerical simulations,
the phasing at the leading edge relative to the forcing, the convective velocity of the
vortices along the cylinder, and finally the resulting phase of the shedding relative
to the forcing, are examined, providing strong support for the vortex interaction
hypothesis. The link between the variation in magnitude of the peak base suction
for different chord-to-thickness ratios and the trailing-edge shedding is shown by
measuring the vortex formation length past the trailing edge.
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(a)

(b)

Figure 6. Comparison between the wake (a) observed in an experiment (Mills 1998) and
(b) predicted numerically for flow over a cylinder with c/t = 6. The experimental plot is
derived from PIV data and forced at Stft = 0.192. The simulation is forced at Stft = 0.17. Both
plots are taken at 0◦ in the forcing cycle.

At this stage, numerical and experimental flow visualizations are compared. Figure 6
shows the wake structure for c/t = 6 taken at 0◦ in the forcing cycle. Figure 6(a)
(Mills 1998; Mills et al. 2002) is obtained from PIV measurements in a water tunnel
at Re = 900. The forcing frequency in that case is Stft = 0.192, corresponding to the
natural shedding frequency. The forcing frequency in the simulation at Re = 400 is
Stft = 0.17, which results in the maximum base suction and is also approximately
the natural shedding frequency. The visualizations are strikingly similar in terms of
overall positions of the leading and trailing vortices. This supports the relevance of
the current numerical results to the higher Reynolds number three-dimensional flows
used in the experiments. The slight difference in Strouhal numbers is a Reynolds
number effect probably due to slight differences in the mean convection velocity of
leading-edge vortices along the cylinder.

3.4.1. Phasing of the leading-edge shedding

In the cases where the flow is locked to the forcing, the leading-edge shedding
is phase locked. The phase of shedding relative to the forcing also appears to be
constant for all chord-to-thickness ratios and forcing frequencies investigated. To
show this, three extreme cases are chosen: a shorter cylinder at a lower frequency
(c/t = 8 and Stft = 0.11); a longer cylinder at an intermediate frequency (c/t =16 and
Stft = 0.15); and an intermediate cylinder at a higher forcing frequency (c/t = 10 and
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Figure 7. Vorticity plots of the leading-edge shedding at Re= 400 and vpert = 2.5%. Vorticity
plots taken at 0◦, 90◦, 180◦ and 270◦ in the forcing cycle for cylinders with c/t = 8, 16 and 10
at applied forcing frequencies of Stft = 0.11, 0.15 and 0.20 respectively.

Stft = 0.20). Figure 7 shows the leading-edge shedding of these three cases at 0◦, 90◦,
180◦ and 270◦ in the forcing cycle. When the forcing frequency is increased, the shear
layer rolls up closer to the leading edge but the phase of shedding relative to the
forcing in each case is approximately the same. Further flow visualizations in § 3.4.3
(figures 9–11) also confirm that the phase of the leading-edge shedding relative to the
forcing remains fixed in all cases.

3.4.2. The convective velocity

The streamwise component of velocity of the vortices as they convect along the
cylinder is the focus of this section. This feature is crucial because it governs the time
taken for a leading-edge vortex to pass the trailing edge, thereby affecting the phasing
there. The following cases are investigated: (i) different cylinder lengths for the
natural shedding case; (ii) different forcing frequencies for a fixed cylinder length; and
(iii) different cylinder lengths for a constant forcing frequency.

To evaluate the convective velocity of the vortices, their locations are determined
at regular time intervals. The local maximum in vorticity is used to define the
location of a vortex. This is found by the Newton–Raphson method using polynomial
interpolation within elements matching the order of the spectral-element scheme. The
velocity is evaluated using central differencing between these locations. The sampling
is performed every 0.21 time units over 8 to 10 time units, which is more than one
shedding period. The convective velocities of the vortices on both sides of the cylinder
are then calculated.

Figure 8 shows the convective velocity of the vortices as they traverse the length
of the cylinder for the three classes studied. Figure 8(a) shows the convective velocity
for flow over cylinders for c/t =6, 8, 10 and 13 with no external forcing. Shown in
figure 8(b) is the convective velocity for c/t = 8 at forcing frequencies of Stft =0.11,
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Figure 8. Streamwise component of the convective velocity of the vortices along the cylinder
as a function of distance downstream from the leading edge. (a) Various chord-to-thickness
ratios in the natural shedding case; (b) various forcing frequencies at a chord-to-thickness
ratio of c/t = 8; (c) various cylinder lengths with forcing frequency at Stft = 0.16. Re= 400 and
vpert = 2.5%.

0.14, 0.165, 0.174 and 0.19. The forcing frequency is fixed at Stft = 0.16 in figure 8(c)
showing the convective velocities for c/t = 7, 9, 11, 13 and 15.

A general trend is observed in all these cases regardless of chord-to-thickness ratio
and forcing frequencies (when forcing is applied). Perhaps this is not surprising given
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the low level of forcing. The convective velocity reaches a minimum close to the time
the vortex is fully formed. After separating from the shear layer, it then accelerates
and reaches semi-equilibrium at approximately 70% of the free-stream velocity.

There are a few notable differences. The minimun convective velocity moves from
approximately 4t to 2t from the leading edge when forcing is applied. This is a result of
the applied forcing causing the reattachment length to shorten significantly. There are
also other exceptions in natural shedding cases. The deviation of the shortest chord-
to-thickness ratio (c/t = 6) from the others is probably due to the close proximity of
the trailing edge. The scatter seen for c/t = 8 is caused by flow that is not perfectly
periodic, i.e. every period is not exactly identical.

3.4.3. Phasing of the trailing-edge shedding

The next step is to investigate the trailing-edge shedding and how this relates to
the mean base pressure. First, the flow for c/t = 10 is examined in detail. Next, the
cylinder with c/t = 8 is investigated because it is typical of the cylinders that have
two local peaks in the mean base suction within the lock-in range. Finally, vorticity
plots for the whole range of cylinders studied show the similarities of the flow at the
trailing edge when the mean base suction peaks.

Figure 9 shows vorticity plots for c/t = 10 at Stft = 0.12, 0.15, 0.165 and 0.18 together
with the plot of mean base pressure as a function of the forcing frequency. Only plots
taken at 0◦ and 90◦ in the forcing cycle are shown. The other half of the cycle
mirrors these plots because the flow is locked and therefore periodic. These leading-
edge vortices convect downstream and control the shedding at the trailing edge, as
the trailing-edge vortices are formed from the attached boundary layer between the
passing of leading-edge vortices. As the forcing frequency is increased from Stft = 0.12
to Stft = 0.165, the gradual increase in mean base suction is associated with a gradual
change (retardation) in the phase of the trailing-edge shedding relative to the forcing.
As the forcing frequency is incremented to Stft = 0.18, there is a more drastic decrease
in the mean base suction. The vorticity plot shows that the higher forcing frequency
suppresses the trailing-edge shedding, which is consistent with the associated decrease
in mean base suction.

Figure 10 shows the vorticity plot for c/t = 8 for forcing frequencies of Stft = 0.14
and Stft = 0.174, which correspond to the two local peaks in the mean base suction.
Also shown is the variation of the mean base pressure as a function of forcing
frequency. At the forcing frequency of Stft = 0.14, the phase of the trailing-edge
shedding relative to the forcing is similar to the case where the chord-to-thickness
ratio is c/t =10 and the forcing frequency is Stft =0.165; both cases show a peak in
the mean base suction. When the forcing frequency is at Stft = 0.174, the shedding
from the trailing edge is approximately 180◦ out of phase relative to the shedding at
the lower forcing frequency (Stft = 0.14). As the shedding in this case is only half a
cycle ahead of the previous case and not a complete cycle ahead, these frequencies
correspond to the intermediate step between shedding modes shown in figure 7.

To demonstrate that the observations for cylinders with c/t = 10 and 8 are
representative of the different cylinder lengths studied, figure 11 shows the vorticity
patterns corresponding to every local peak in mean base suction. These are taken
at 0◦ in the forcing cycle. They correspond to the same chord-to-thickness ratios
and Strouhal numbers plotted in figure 5, which shows the stepwise behaviour.
For the cases corresponding to the primary peaks, the shedding at the trailing edge
shows approximately the same relative phasing. In contrast, the trailing-edge shedding
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Figure 9. (a) The mean base pressure coefficient as a function of forcing frequency. (b) Vor-
ticity contours for flow over a cylinder with c/t = 10, Re= 400 at 0◦ and 90◦ in the forcing
cycle at forcing frequencies of (a) Stft =0.12, (b) 0.15, (c) 0.165 and (d) 0.18 with an amplitude
of vpert = 2.5%.

corresponding to secondary peaks is 180◦ out of phase. The vorticity plots in figure 11
clearly show the different shedding modes that correspond to the Strouhal number
steps in figure 5. For the primary cases, the local peaks corresponds to c/t = 6, 7,
8 and 9; c/t = 10, 11, 12 and 13; and c/t = 15 and 16, for shedding modes n= 2, 3
and 4, respectively. For the secondary cases, c/t = 8 and 9 and c/t = 12, 13 and 14
correspond to modes between n= 2 and 3, and n= 3 and 4, respectively.

3.5. The vortex formation length past the trailing edge

In § § 3.1 and 3.2, we see that some local primary peaks in mean base suction are more
significant in both the simulated and experimental data. The previous subsection
has shown that the phase of the trailing-edge shedding relative to the forcing is
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Figure 10. (a) The mean base pressure coefficient as a function of forcing frequency. (b) Vor-
ticity contours for flow over a cylinder with c/t = 8, Re= 400 taken at 0◦ and 90◦ in the forcing
cycle at forcing frequencies of (a) Stft =0.14 and (b) 0.174 and vpert = 2.5%.

approximately the same in all these cases. The vortex formation length is calculated
for a selection of cases to show the direct connection between the mean base suction
and the trailing-edge shedding.

The vortex formation length has been calculated for cylinders with chord-to-
thickness ratios of c/t = 8 and 10. Also included for comparison are results for a
cylinder with an elliptical leading edge with a chord-to-thickness ratio of c/t = 7.5
and a 5:1 axis-ratio half-ellipse for the nose. The standard deviation of the cross-
flow component of velocity is determined along the centreline downstream of the
trailing edge of the cylinder. The vortex formation length is taken to be the distance
downstream where the fluctuating component of the velocity in the cross-flow direction
reaches a maximum. Plots of the vortex formation length and mean base pressure as
a function of forcing frequency for the three different cylinders are shown in figure 12.

The elliptical leading-edge cylinder shows approximately a linear relationship
between the mean base pressure and the vortex formation length, although over
a much narrower range, as the flow only locks on to this range for this level of
forcing. In this case, there is no leading-edge shedding and the base shedding can
be seen to be very sensitive to forcing frequency as reflected in the vortex formation
length and mean base pressure. For most of the frequency range, there is also a direct
relationship between the vortex formation length and the mean base pressure for the
rectangular cylinder; however, it is not maintained at high forcing frequencies where
the trailing-edge shedding is suppressed.
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c/t = 9, Stft = 0.12 c/t = 8, Stft = 0.174

c/t = 10, Stft = 0.165 c/t = 9, Stft = 0.162
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Figure 11. Vorticity plots for cylinders with forcing frequencies chosen so as to result in local
maxima in the mean base suction as a function of forcing frequency. The plots are taken at
0◦ in the forcing cycle. All plots in the left column and top three plots in the right column
correspond to primary peaks and bottom five plots on the right correspond to secondary peaks.

4. Discussion
4.1. Validity of parameter choices

Initially, modelling issues will be discussed in this section, including the effect of
forcing amplitude and the influence of Reynolds number. The presence of the natural
(ILEV) instability at these low Reynolds numbers is also discussed.

4.1.1. Effect of Reynolds number

To study the effects of Reynolds number, the flow for c/t =10 and vpert =2.5%
was simulated at Re =300, 400 and 500. Note that for the unforced case at Re= 300
the rollup of the leading-edge shear layer is very much weaker than occurs at the
higher Reynolds numbers. Despite this, varying the Reynolds number had only a
small effect on mean base pressure and did not change the overall observed trends



50 B. T. Tan, M. C. Thompson and K. Hourigan

–0.6

–0.5

–0.4

–0.3

–0.2

1

2

3

4

5 

0.10 0.12 0.14 0.16 0.18 0.20
Stft

(c)

–0.6

–0.5

–0.4

–0.3

–0.2

1

2

3

4

5

0.10 0.12 0.14 0.16 0.18 0.20

xf

t

cp

cp

cp

(a)

–0.6

–0.5

–0.4

–0.3

–0.2

1

2

3

4

5

0.10 0.12 0.14 0.16 0.18 0.20

(b)

xf

t

xf

t

Figure 12. Vortex formation lengths (grey lines) and mean base pressure coefficient (black
lines) as a function of forcing frequency for (a) c/t = 8, (b) c/t =10, and (c) an elliptical
leading-edge cylinder with c/t = 7.5. Re= 400 and vpert =2.5% in all cases. Black and grey
arrows show the vortex formation length and the mean base pressure respectively when no
forcing is applied.
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for the range of forcing frequencies simulated (0.08 � Stft � 0.28). The flow locks to
the forcing over a large frequency range in these cases (e.g. for c/t =10, Re= 400
and vpert = 2.5%, the lock-in range was 0.12 � Stft � 0.23). Increasing the Reynolds
number did not significantly alter the forcing frequency at which the peak in mean
base suction occurred but marginally increased the magnitude of the peak.

4.1.2. Effect of forcing level

The forcing level applied at the computational boundaries was generally chosen as
vpert = 2.5%. Simulations were performed without the mean free-stream component to
determine the effective forcing level near the cylinder. The perturbation amplitude was
monitored at three locations near the corners of the cylinder, i.e. (i) 0.5t horizontally
away, (ii) 0.5t vertically away, and (iii) 0.5t both vertically and horizontally away
from the sharp edge. The perturbation level near the cylinder increased linearly by
approximately 2% relative to the free-stream velocity when the chord-to-thickness
ratio is increased from c/t = 6 to 16. This is due to the increase in blockage in the
cross-flow direction.

Although the difference in effective forcing level near the cylinder appears large
as the chord-to-thickness is varied, further simulations have shown that this system
is not sensitive to forcing levels once the flow is locked. These simulations were
performed with vpert = 1.25% for a range of chord-to-thickness ratios and forcing
frequencies. Reducing vpert by 50% results in a larger variation in forcing level near
the cylinder compared with varying the chord-to-thickness ratio, c/t , for a fixed vpert.
The simulations with a lower forcing amplitude shows the same trends in mean base
suction with only a small quantitative difference, in particular, the magnitude of
the primary peaks decreases marginally. The only significant variation would be the
amplitude of the secondary peaks in mean base pressure, which appear larger when
the forcing amplitude is reduced.

4.2. The natural instability

The natural feedback loop can lock the leading- and trailing-edge shedding in the
absence of external forcing at the Reynolds numbers used in these simulations (see
Hourigan et al. 2001). However, as the feedback loop is weak, a low-level oscillatory
forcing is able to lock the flow over a wider range of frequencies (details are presented
in § 3.1), overpowering the natural feedback loop.

The effect of the ILEV mechanism for the natural shedding case is evident when
comparing the mean base pressures and drag forces between the forced and unforced
cases (figures 3 and 4). In the forced cases, the forcing frequency at which the mean
base pressure reaches a minimum (equivalent to maximum base suction) does not
coincide with the natural shedding frequency, although the discrepancy is generally
not large. The frequency selection will be shown in § 4.4 to be governed by the
convective velocity of the vortices along the cylinder. Through figure 8 it has already
been shown that there are some differences in convective velocities between the forced
and unforced cases. The discrepancy in frequency, although small, strongly influences
the trailing-edge shedding (see § 4.5), and results in the differences in mean base
pressure between the local peaks in the forced and the unforced cases. The applied
forcing alters the characteristics of the mean drag relative to the unforced case in a
manner similar to the mean base pressure.

4.3. Comparison with experimental results

The forcing levels in the experimental study (Mills et al. 1995, 2002; Mills 1998)
were measured near the cylinder in the absence of the mean flow. The amplitude
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was measured at 0.1t vertically away from the edge of the cylinder for c/t = 10; a
level of 5% relative to the free stream was determined and kept constant for the
other chord-to-thickness ratios examined. This level of forcing can be achieved in
the simulations when vpert is between 1.25% and 2.5% of the free-stream velocity. As
discussed earlier, the simulations are not sensitive to forcing amplitude at these levels
of forcing.

The behaviour of the primary peaks in mean base suction seen in figure 3 for the
simulated flows is also seen in the the experimental data of Mills (1998) and Mills
et al. (2002). Although there is substantial agreement between the predictions and the
experimental results, there are also several differences between the two sets of data.
The most noticeable is the different scale used for both axes. For the frequency range,
the one used for the simulations is chosen to fully capture the lock-in range. For
the experimental data, the lower limit in frequency is determined by an experimental
limitation and there is little variation from the unforced case past Stft = 0.20.

Besides the quantitative differences there are a couple of distinct trends in the
numerical and experimental data. The first one concerns the variation in the magnitude
of the peaks in mean base pressure. In the simulations, local primary peaks in mean
base suction appear to be larger when they occur at higher forcing frequencies. The
experimental data show larger values of mean base pressure when the peaks occur at
an intermediate frequency. This is governed by the response of trailing-edge shedding
to these forcing frequencies and will be discussed further in § 4.5.

The height of the steps between the the shedding modes shown in figure 5 is
another significant difference between the experimental and numerical results. The
steps in the simulation are approximately Stfc =0.55n while for the experiments they
are approximately Stfc = 0.6n. This difference is also present in the natural shedding
case when comparing simulated (Hourigan et al. 2001) and experimental (Nakamura
et al. 1991) data. The discrepancy is addressed together with the frequency selection
mechanism in § 4.4.

Just to recap, there are distinct differences between the experiments and numerical
model that are likely to cause these differences. The simulations are performed
in two dimensions at Re = 400 while for the experiments Re ≈ 9000. Although the
applied forcing suppresses three-dimensionality in the flow field, it is present at
higher Reynolds numbers together with the two-dimensional spanwise vortex rollers
(Hourigan et al. 1993). In addition, but less important, there are differences in the way
the forcing is generated and the induced perturbation field near the cylinder meaning
that the forcing fields only approximate each other.

4.4. Phasing of the leading- and trailing-edge shedding relative to forcing

Some of the vorticity plots shown earlier are re-examined in this section to investigate
the phase relationship between the leading- and trailing-edge shedding, and the
forcing. All vorticity plots shown in this study, with a detailed illustration in figure 7,
show that the phase of shedding from the leading edge relative to the forcing is
constant once the flow is locked. The top shear layer is in the initial stages of forming
a vortex at 180◦. This vortex then gains more circulation from the shear layer at 270◦.
It starts to detach at 0◦ and by 90◦, it is almost completely shed from the shear layer.
The shedding from the bottom is 180◦ out of phase with the top. In all cases, the
vortex on the top of the cylinder forms between 90◦ and 270◦ in the forcing cycle;
this is when the transverse perturbation is accelerating in the downward direction.
The forcing is therefore causing a more compact vortex to form closer to the leading
edge relative to the natural shedding case. During the other half of the cycle, the
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acceleration upward helps shed the vortex. This phase relationship is likely to be the
most beneficial to the shedding process resulting in the constant phase relationship
between the shedding and the forcing for all the cases.

The phase of the trailing-edge shedding relative to the forcing is governed primarily
by the forcing frequency and chord-to-thickness ratio. In § 3.4.2, it was shown that the
convective speed of vortices along the cylinder is not sensitive to various parameters.
Noting that the trailing-edge vortices are shed between the passing of leading-edge
vortices, increasing the forcing frequency gives less time between periods for the
leading-edge vortices to travel downstream and therefore retards the phase of the
leading-edge vortices on arrival at the trailing edge. Increasing the chord-to-thickness
ratio also retards the phase of the trailing-edge shedding because of the larger distance
for the leading-edge vortices to travel before reaching the edge of the cylinder. This is
illustrated in figure 11 where within each of the various shedding modes, the forcing
frequency decreases with chord-to-thickness ratio to keep the phase of the shedding
constant at the trailing edge. To maintain the same phase of trailing-edge shedding, the
effect of decreasing the forcing frequency and advancing the phase must be matched
with the retarding of the phase caused by increasing the chord-to-thickness ratio.

All the primary local peaks in mean base suction for the various chord-to-thickness
ratios share a similar phase of the trailing-edge shedding relative to the forcing. The
secondary local peaks also share a common phase, approximately 180◦ shifted relative
to the primary peaks. The trailing-edge shedding for a case associated with the primary
peak is shown in figure 9(c) (c/t = 10 and Stft = 0.165) and figure 11 (primary peaks).
There are similarities between the phases of the leading- and trailing-edge shedding
in this case. At 0◦ in the forcing cycle, both the leading- and trailing-edge vortices
are forming on the top side of the cylinder while on the bottom of the cylinder, the
vortices have been shed from both the leading and trailing edges. At 90◦ into the
forcing cycle, both shedding processes are still at a similar phase in that the vortices
on the bottom side are just forming while the top ones are about to be shed. Overall,
vortices on the top half of the cylinder form approximately between 90◦ and 270◦ in
the cycle when the perturbation velocity is accelerating in the downward direction
and the opposite occurs during the other half of the cycle. This raises another possible
reason for the strong base suction besides the resonance resulting from the similarity
in shedding phase between the leading and trailing edge. The forcing is assisting the
trailing-edge vortices to form closer to the centreline of the cylinder. A stronger base
suction is then a result of the vortices forming closer to the base. It is not surprising
then that increasing the forcing level increases the magnitude of these local peaks.

The phase of the shedding relative to the forcing for the secondary local peak
is illustrated in figure 10 (c/t = 8 and Stft = 0.174) and figure 11 (secondary peaks).
Although the secondary peaks in mean base suction are generally weaker at these
intermediate steps, there is still some resonance that causes the stronger mean base
suction. Simulations at a lower forcing level of vpert = 1.25% have consistently shown
that contrary to the behaviour of the main peaks in mean base suction, the magnitude
of these secondary peaks decreases with increasing forcing amplitude. In this case, the
opposite of the earlier case is occurring. The forcing field is causing the trailing-edge
vortices to form further away from the centreline and cylinder base, and therefore
increasing the forcing level results in a reduction in base suction.

4.5. Frequency selection and the stepping in the natural and forced shedding cases

An earlier study by Hourigan et al. (1993) hypothesized that the control (stepping)
of the mean base suction was due to the leading-edge vortices passing the trailing
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edge and interfering with the base shedding. This study, together with Hourigan et al.
(2001) for the natural shedding case, supports this hypothesis by revealing the details
involved in this interaction. The visualizations presented in this paper clearly show
that trailing-edge vortices form between the passing of leading-edge vortices. In both
the natural shedding case and for the flow corresponding to the primary peaks for the
forced case, the leading- and trailing-edge shedding is synchronized. As the average
convective velocity has been shown to be approximately constant, the frequency must
decrease with increasing chord-to-thickness ratio to allow more time for the vortex to
traverse the cylinder and maintain the synchronization. This continues until the flow
is no longer receptive to the low frequency. While this is happening, another higher
frequency within the lock-in range is excited. Here the synchronization between the
leading and trailing edge is maintained but now an additional pair of vortices exists
along the cylinder. The frequency is higher because less time is needed in each period
as the leading-edge vortices take an extra period to reach the trailing edge. This is
associated with the next higher shedding mode and a jump to the next step in the
frequency selection diagram. As the chord-to-thickness ratio is increased further, this
process repeats itself for the remaining steps.

In both the natural shedding and forced cases, the steps in frequency of the
vortex shedding and peak time-mean base pressures, respectively, correspond to
approximately Stc = 0.55n. The Strouhal number based on chord is the frequency
multiplied by the chord and divided by the free-stream velocity. Consider the first
mode (n = 1). The frequency is the inverse of the time taken by a leading-edge
vortex to travel the chord. Therefore, the Strouhal number based on chord, Stc,
is the streamwise component of the convective velocity of the leading-edge vortex
averaged over the chord and scaled with the free-stream velocity. For the higher
modes, the factor n is the number of periods required for a leading-edge vortex to
pass the trailing edge. From figure 8, both natural and forced shedding cases show
the convective velocity initially reaching a minimum before rising to saturate at about
70% of the free-stream velocity. The levels of the steps indicate that the average
convective velocity is about 55% of the free-stream velocity. Both the experiments
for the natural shedding case (Nakamura et al. 1991) and the forced case (Mills 1998;
Mills et al. 2002) show a step height of about Stc = 0.6n. Differences in Reynolds
number and thus three-dimensionality in the experiments may account for this slightly
higher average convective velocity.

4.6. Trailing-edge shedding and the vortex formation length

In § 3.1, both the computed and previous experimental results show that the magnitude
of the peak base suction varies with chord-to-thickness ratio. The trailing-edge
shedding has the same phase relative to the forcing for all cases associated with the
primary peaks. This is hypothesized to be most conducive to the shedding process.
This frequency is controlled by the time taken for the leading-edge vortices to traverse
the cylinder. It is therefore hypothesized that the response of the base shedding to
the forcing at the frequency corresponding to peak mean base suction governs the
magnitude of the peak mean base suction.

This hypothesis is supported by the results in § 3.5 and figure 12. The vortex
formation length is a quantifiable measure of the trailing-edge shedding. The vortex
formation length is linearly related to the mean base suction when there is no leading-
edge shedding in the case with the elliptical leading edge. The similar relationship
between the vortex formation length and the mean base suction for the cases with the
rectangular cylinder geometry suggests that the base shedding is also responsible for
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the observed behaviour in mean base suction when there is leading-edge shedding.
As the base shedding is sensitive to frequency for the elliptical leading-edge cylinders,
it is also reasonable to assume that the base shedding is sensitive to frequency for
rectangular cylinders. While the forcing frequency at which the mean base suction
peaks is controlled by a separate mechanism, the resulting magnitude of the peak is
governed by how receptive the base shedding is to that particular frequency.

The sensitivity of the base shedding can also explain why the peak mean base
suction in the forced case is greater at some chord-to-thickness ratios than the natural
shedding case but not others (§ 3.1). In the unforced case, the frequency selection is
governed by the ILEV/TEVS instability (Hourigan et al. 2001). In the forced shedding
case, there are slight differences in the convective velocity and therefore the frequency
at which the base suction peaks compared with the unforced case. The response of
the trailing-edge shedding to these two frequencies probably accounts for this.

This hypothesis can also be invoked when comparing the magnitudes of the peaks
in the simulation and the experiments. In the simulation, the peaks are generally
greater when they occur at lower forcing frequencies, while in the experiments they
are generally greater at an intermediary frequency. This is probably due to the base
shedding being receptive to different frequencies and to the large disparity in Reynolds
numbers.

4.7. Suppression of base shedding

From the mean base pressure plots in figure 3 and mean drag plots in figure 4, there
are cases where the mean base suction and drag are below that of the unforced case.
Effectively, the base shedding is not receptive to the forcing frequency for this range
although the flow is locked. Both the forcing and leading-edge vortices are interfering
with the base-shedding process; in some cases the base shedding is significantly
reduced or even suppressed. An example of this can be seen in figure 9(d) (c/t = 10,
Stft = 0.18). This phenomenon has been observed in experiments using short bluff
bodies. Experiments by Bearman & Obasaju (1982), and Ongoren & Rockwell (1988)
observed that flow around short bluff bodies oscillated at higher frequencies could
reduce the base suction to less than that without forcing.

4.8. Relating the fluctuating lift forces to the flow field

The Strouhal numbers based on forcing frequency (Stfc) which result in local peaks in
mean drag and local maxima/minima in fluctuating lift force are plotted in figure 5
against chord-to-thickness ratio. The mean drag force mirrors the mean base pressure
as expected and shows both the primary and secondary intermediate steps. The
Strouhal numbers for the fluctuating lift force also show this stepping behaviour
but with local maxima corresponding to the primary steps and local minima to the
intermediate secondary steps. The lift force is a function of the pressure on the top
and bottom surfaces. The leading-edge vortices represent a low-pressure region on
the surface near the vortex. Therefore the fluctuations in the lift force come from the
mismatch in vortices on both sides of the cylinder. The leading edge sheds vortices
alternately, which contributes to some of the fluctuating lift force. As this occurs
similarly for all cylinders and frequencies, it cannot account for the variations in
fluctuating lift forces as the forcing frequency is varied. The suction effects of the
pairs of vortices along the cylinder approximately cancel each other. Once these
vortices pass the trailing edge, their effect on the cylinder is significantly diminished.
Therefore, the mismatch leading to fluctuating lift occurs at the trailing edge as
the pairs of vortices from the top and bottom pass the trailing edge 180◦ out of
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Figure 13. Vorticity contours (centre) and surface pressure coefficient on the top and bottom
surface (above and below) for c/t =13, Re= 400, taken at 0◦ in the forcing cycle with
vpert = 2.5%, and (a) Stft = 0.14 and (b) to Stft =0.16. The inset at the bottom left of each
vorticity plot is the time trace of the lift coefficient with the dot corresponding to the time of
plots. Note the lift force is maximum upwards at 0◦ in the forcing cycle.

phase. For a given chord-to-thickness ratio, the forcing frequency controls the phase
relative to the forcing when the vortices pass the trailing edge while the phase of the
leading-edge shedding relative to the forcing is fixed. The magnitude of the fluctuating
lift force is controlled by the relative phase between the leading-edge shedding and
vortices passing the trailing edge since this can lead to reinforcement or cancellation.
Maximum superposition occurs in cases associated with the primary steps. For the
intermediary secondary steps where the trailing-edge shedding, and therefore the
passing of the leading-edge vortices at the trailing edge, is 180◦ out of phase from
the earlier case, minimum superposition occurs. Therefore the fluctuating lift, like the
mean base pressure and integrated drag force, is also dependent on the phasing of
the leading-edge vortices as they pass the trailing edge.

The flow for c/t =13 is used to illustrate the relationship between the timing
of vortices passing the trailing edge and the fluctuating lift force. Figure 13 shows
vorticity plots taken when the forcing is at Stft = 0.14 and 0.16, which correspond to
local maxima and minima for the standard deviation of lift coefficient. These plots are
taken at 0◦ in the forcing cycle. The time trace of the lift coefficient in both plots is
sinusoidal and shows that the lift coefficient reaches a maximum (maximum lift force
in the upward direction) at 0◦ in the forcing cycle. This corresponds to the maximum
acceleration in the upward direction for the perturbation field. Note that the offset
between the top and bottom surfaces of the cylinder is due to the perturbation
field. Simulations without any mean flow have shown the pressure fluctuation on the
surface of the cylinder to be approximately equivalent to this offset.

The leading-edge shedding occurs at approximately the same shedding phase for
both forcing frequencies shown. At the trailing edge, the plot shows that the flows
are approximately 180◦ out of phase. As a result, there are three pairs of vortices for
the Stft = 0.16 case but only two pairs plus an unpaired vortex on the top side when
Stft = 0.14 (neglecting the partially formed vortex on the bottom side of the leading
edge in both cases). For the case when Stft = 0.14, the extra vortex on the top side
increases the lift coefficient in the upward direction because each vortex is associated
with a low pressure region. When Stft = 0.16, the vortices are paired and this results
in a lower lift coefficient. As these are extreme cases with respect to the fluctuating
lift force, other forcing frequencies result in intermediate lift coefficient values.
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Figure 14. Representation of the formation of the separating shear layer through convection
of leading-edge vorticity.

4.9. The relative roles of ILEVs and TEVs in the feedback process

The important role of the trailing-edge shedding in governing the flow response to
applied forcing has been shown. This subsection attempts to highlight the importance
of the trailing-edge shedding when no forcing is applied.

The original explanation for the Strouhal number stepping with chord-to-thickness
ratio for the unforced flow was through the impinging shear layer instability (ISLI)
or, perhaps more accurately, the impinging leading-edge vortex (ILEV) instability
mechanism (Nakamura et al. 1991; Mills et al. 1995), whereby leading-edge vortices
passing the trailing edge of the cylinder induce a pressure fluctuation which perturbs
the leading-edge shear layer hence controlling the timing of release of the next
leading-edge vortex. Thus a feedback loop is established. That mechanism has been
hypothesized to be responsible for a range of resonant phenomena such as cavity
resonances (e.g. Rockwell & Naudascher 1979). More recently, it has been conjectured
that trailing-edge vortices (TEV) play a much stronger role in the feedback loop than
previously believed (Hourigan et al. 2001). A couple of features of the observations
have led to this view. First, the early experimental visualizations of the locked flow
did not show any strong base shedding (Mills et al. 1995). This now appears to
have been a seeding problem with the visualizations, i.e. a failure to feed smoke, dye
or hydrogen bubbles into the region near the trailing edge, and hence the strong
trailing-edge shedding was overlooked. Secondly, the lengths of the Strouhal number
steps in this case are quite short, more consistent with the narrow frequency band
over which the trailing-edge shedding is receptive, than the relatively wide band for
leading-edge shedding (Soria et al. 1993; Wu & Soria 1992). However, the evidence
supporting a strong role for TEVs in the feedback loop was still circumstantial.

One of the advantages of numerical simulations is the ability to investigate separate
effects through various means that are difficult or impossible to do experimentally. To
determine the relative roles of TEVs and ILEVs in the feedback process, the induced
pressure fluctuation at the leading-edge shear layer for both processes needs to be
quantified. An attempt to isolate the effects is described below.

A numerical simulation was performed for a representative unforced case for
c/t = 10. For this chord-to-thickness ratio the locking is strong. The flow was evolved
until it had reached its periodic, asymptotic state. The flux of vorticity into the
leading-edge shear layer depends on the product of the pressure gradient dp/dy and
convection velocity vc at the leading-edge corner (Morton 1984) as shown in figure 14.
Here, y is measured along the front face. The convection velocity is representative
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Figure 15. Variation of vorticity flux into the separating shear layers from convecting
leading-edge vortices, trailing-edge vortices and measured total flux. Re= 400, c/t = 10.

of the mean velocity through the boundary layer. In this case it was measured at a
horizontal distance of 0.2t from the top corner. While the exact positioning affects
the magnitude of the recorded flux it has little effect on the oscillatory component,
which is important as shown by the following argument. Both dp/dy and vc were
recorded directly from the numerical simulations. The flux varies about a non-zero
mean value with a small-amplitude, approximately sinusoidal oscillation as shown in
figure 15. Next the simulation is used to isolate the individual effects on the vorticity
flux into the leading-edge shear layer of (i) the passage of leading-edge vortices past
the trailing edge, and (ii) the formation and release of the trailing-edge vortices into
the wake. This is done by recording the position of the maximum vorticity for both
vortex types as a function of time for approximately two cycles. Simultaneously, the
total circulations of both types of vortex were also recorded. Although there is some
arbitrariness in the spatial extent of the vortices when computing the circulations,
this does not affect the main conclusions given below.

A complex mapping using the Schwarz–Christoffel transformation (e.g. Churchill,
Brown & Verhey 1974) can be used to calculate the potential flow past a long cylinder
by transforming the cylinder to the interior of a circle. By mapping the geometry to
a circle, the positions and strengths of image vortices within the circle are known



Flow past rectangular cylinders 59

so that the boundary conditions at the surface of the body are satisfied. Using the
transformation, and the positions and circulations recorded from the simulation, and
treating the vortices as potential-flow point vortices, it is thus possible to calculate the
potential flow velocity and pressure distribution throughout the domain. In particular,
this allows the vorticity flux into the leading-edge shear layer to be estimated owing
to the presence of uniform background flow, and leading-edge and trailing-edge
vortices. This has been done for both forming and shedding trailing-edge vortices,
and convecting leading-edge vortices.

The results are shown in figure 15. The time variation of the vorticity flux from
the trailing-edge vortices is correlated well with the measured flux variation, clearly
showing the same phasing. In contrast, the flux contribution from the passage of the
leading-edge vortices past the trailing edge is not well correlated with the measured
flux. This phasing seems to indicate that the ILEV contribution to the feedback loop is
less important than the TEV component. These curves have been truncated when the
leading- and trailing-edge vortices begin to merge in the wake. The dashed lines show
the approximate effect as the merged vortices are convected further downstream. For
the leading-edge vortices, the flux contribution is only recorded when they are within
a few cylinder thicknesses from the trailing edge. The dip in the curves for the leading-
edge vortices occurs when they pass the trailing edge, while the peak for trailing-edge
vortices corresponds to the time when a vortex has reached maximum strength and
is beginning to be shed downstream. Note that the size of the perturbation to the
vorticity flux is relatively small for both the leading- and trailing-edge vortices; the
total flux variation is due to the time variation of all the vorticity in the field and is
especially influenced by vorticity near the leading edge.

5. Conclusions
The forced flow around long rectangular cylinders has been simulated for a wide

range of parameters. The Strouhal numbers based on chord for the primary peaks
in base suction are in good agreement with experimental results for the forced case.
In addition, they correspond well with natural Strouhal numbers for the unforced
simulations.

A detailed investigation has been performed to identify the physical mechanism
leading to this correspondence. The simulations show that the phase of the leading-
edge shedding relative to the forcing is insensitive to chord-to-thickness ratio and
forcing frequency. In addition, downstream of the leading-edge separation bubble, the
convective velocity is also relatively insensitive to variation of the same parameters.
The phase of the trailing-edge shedding relative to the forcing is then shown to
control the mean base pressure and hence drag. Trailing-edge vortices can only form
between the passing of leading-edge vortices and because of this, either increasing
the forcing frequency or the chord-to-thickness ratio retards the phase of the base
shedding. The peaks in mean base suction all occur when the base shedding is at a
similar phase for the various chord-to-thickness ratios and this leads to the stepping
in the frequency selection and the various modes (n). With the frequency selection
accounted for, the magnitude of the base suction peaks is attributed to the sensitivity
of the base shedding to those frequencies. Hourigan et al. (2001) has also suggested
the importance of base shedding in the natural shedding case. By isolating the effects
of ILEVs and TEVs, this paper presents evidence that the trailing-edge shedding
plays the significant role in the feedback mechanism. In particular, the influence on
the leading-edge shear layer of both the formation and shedding of trailing-edge
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vortices, and convecting leading-edge vortices, is quantified. The narrowness of the
frequency band over which trailing-edge shedding is receptive to external forcing has
a strong influence in controlling the length of the Strouhal number steps. In contrast,
for situations where there is no trailing-edge shedding, such as for cavity resonances
(Rockwell & Naudascher 1979), and bodies with splitter plates (Nakamura 1996), the
steps are much longer, since the leading-edge shear layer is receptive over a much
broader frequency band.

The feedback process for flow locking and Strouhal number stepping can be
described as follows. The narrow-band absolute instability of the trailing-edge
shedding controls the selection of the Strouhal numbers of the steps. The Strouhal
number based on thickness (Stt ) is centred on the natural Strouhal number for the
base shedding. The perturbation to the leading-edge shear layer, leading to leading-
edge vortex shedding, is correlated with the formation and release of the trailing-
edge vortices. This perturbation locks the leading-edge shedding to the trailing-edge
shedding. These leading-edge vortices also play a significant role. Trailing-edge vortices
can only form between the passing of leading-edge vortices, hence the formation of
strong trailing-edge vortices, and thus strong base suction, are only possible for
certain chord-to-thickness ratios. This is because the convection velocity of leading-
edge vortices is approximately constant once they are released from the leading-edge
shear layer.

The same frequency selection process is also controlling the fluctuating lift force. In
this case the unbalanced leading-edge vortices passing the trailing edge of the cylinder
appear to cause the fluctuations.

The mechanisms responsible for the variation of mean drag and the fluctuating lift
have been scrutinized in this study. In terms of potential applications, other studies
have shown that it is possible to substantially increase the heat transfer rate from
heated plates by reducing the reattachment length (Cooper, Sheridan & Flood 1986).
While the external forcing reduces the reattachment length, with careful selection of
chord-to-thickness ratio and/or applied frequency, the drag penalty can be avoided
while also reducing the fluctuating lift forces.
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